Short Proofs of the Kneser-Lovász Coloring Principle

نویسندگان

  • James Aisenberg
  • Maria Luisa Bonet
  • Samuel R. Buss
  • Adrian Craciun
  • Gabriel Istrate
چکیده

We prove that the propositional translations of the KneserLovász theorem have polynomial size extended Frege proofs and quasipolynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lovász theorem that avoids the topological arguments of prior proofs. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma. The propositional translations of the truncated Tucker lemma are polynomial size and they imply the Kneser-Lovász principles with polynomial size Frege proofs. It is open whether they have (quasi-)polynomial size Frege or extended Frege proofs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Kneser Coloring Theorems with Combinatorial Proofs

The Kneser conjecture (1955) was proved by Lovász (1978) using the Borsuk-Ulam theorem; all subsequent proofs, extensions and generalizations also relied on Algebraic Topology results, namely the Borsuk-Ulam theorem and its extensions. Only in 2000, Matoušek provided the first combinatorial proof of the Kneser conjecture. Here we provide a hypergraph coloring theorem, with a combinatorial proof...

متن کامل

Proof Complexity and the Kneser-Lovász Theorem (I)

We investigate the proof complexity of a class of propositional formulas expressing a combinatorial principle known as the KneserLovász Theorem. This is a family of propositional tautologies, indexed by an nonnegative integer parameter k that generalizes the Pigeonhole Principle (obtained for k = 1). We show, for all fixed k, 2Ω(n) lower bounds on resolution complexity and exponential lower bou...

متن کامل

Propositional Proofs in Frege and Extended Frege Systems (Abstract)

We discuss recent results on the propositional proof complexity of Frege proof systems, including some recently discovered quasipolynomial size proofs for the pigeonhole principle and the Kneser-Lovász theorem. These are closely related to formalizability in bounded arithmetic.

متن کامل

Short proofs of classical theorems

We give proofs of Ore’s theorem on Hamilton circuits, Brooks’ theorem on vertex coloring, and Vizing’s theorem on edge coloring, as well as the Chvátal-Lovász theorem on semi-kernels, a theorem of Lu on spanning arborescences of tournaments, and a theorem of Gutin on diameters of orientations of graphs. These proofs, while not radically different from existing ones, are perhaps simpler and more...

متن کامل

A short proof for Chen's Alternative Kneser Coloring Lemma

We give a short proof for Chen’s Alternative Kneser Coloring Lemma. This leads to a short proof for the Johnson-Holroyd-Stahl conjecture that Kneser graphs have their circular chromatic numbers equal to their chromatic numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015